validpy.SVM.src package¶
Submodules¶
validpy.SVM.src.experimentKcross module¶
-
validpy.SVM.src.experimentKcross.
grid
(conf, data_sets, output_length)¶ Runs the k-cross validation over all possible parameter combinations
Parameters: - conf (JSON) – configuration JSON
- data_sets (list[list[tuple(list[float], list[float])]]) – examples as list of tuple (input, output)
Returns: None
-
validpy.SVM.src.experimentKcross.
k_cross_experiment
(kernel, c, epsilon, degree, data_sets, out_folder, n_processes, output_length, csv=None)¶ Executes the k-cross validation
Parameters: - kernel (string) – Kernel function (possible values: linear, poly, rbf, sigmoid)
- c (float) – penalty parameter C of the error term
- epsilon (float) – Epsilon in the epsilon-SVR model, it specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value
- degree (int) – Degree of kernel function is significant only in poly, rbf, sigmoid
- data_sets (list[list[tuple(list[float], list[float])]]) – List of the k data sets
- out_folder (str) – Path to the output folder
- output_length (int) – Output length
- n_processes (int) – Number of parallel processes
- csv (FileIO) – Output csv file
Returns: Average error and average training time over the k experiments
Return type: tuple(float, float)
-
validpy.SVM.src.experimentKcross.
k_train
(kernel, c, epsilon, degree, train, valid, folder, report, svr, q)¶ Runs the training and the model validation, this function have to been called via Process() https://docs.python.org/3/library/multiprocessing.html
Parameters: - kernel (string) – Kernel function (possible values: linear, poly, rbf, sigmoid)
- c (float) – penalty parameter C of the error term
- epsilon (float) – Epsilon in the epsilon-SVR model, it specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value
- degree (int) – Degree of kernel function is significant only in poly, rbf, sigmoid
- train (list[tuple(list[float], list[float])]) – training set
- valid (list[tuple(list[float], list[float])]) – validation set
- folder (str) – path to the output experiment folder
- report (str) – path to the output experiment report file (.txt)
- svr (list[str]) – list of file name where to save models
- q (Queue) – Queue
Returns: training time and average validation error
Return type: list[float]
-
validpy.SVM.src.experimentKcross.
main
(conf_file)¶ Reads configuration file and runs the k-cross validation experiments
Parameters: conf_file (str) – Path to the configuration file Returns: None
-
validpy.SVM.src.experimentKcross.
split_data_set_file
(file_name, input_length, output_length, k, separator=', ')¶ Reads the data set from csv, split the input and the output, shuffle the example list and split it in to k subsets
Parameters: - file_name (str) – path to the csv file
- input_length (int) – input length
- output_length (int) – output length
- k (int) – number of subsets
- separator (Optional[str]) – csv file separators, default = ‘,’
Returns: list of subsets
Return type: list[list[tuple]]
-
validpy.SVM.src.experimentKcross.
validate
(clfs, validation_set)¶ Compute the average euclidean distance activating the model over a validation set
Parameters: - clfs (list[SVR]) – list of model
- validation_set (list[tuple(list[float], list[float])]) – Validation set
Returns: average euclidean distance
Return type: float